If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4w^2+23w-6=0
a = -4; b = 23; c = -6;
Δ = b2-4ac
Δ = 232-4·(-4)·(-6)
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{433}}{2*-4}=\frac{-23-\sqrt{433}}{-8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{433}}{2*-4}=\frac{-23+\sqrt{433}}{-8} $
| -4^w2+23w-6=0 | | 3j=20 | | 4/6=16/(3xN) | | (w-4/9)(-2=3)=-4/5 | | 6x-18=45 | | 13x=187 | | x÷8=-2 | | H(6)=7+2x | | 20/j=4 | | b/5=2/5 | | 8p=1/2 | | 64x=448 | | x/56=8/64 | | 7x+3=(2+2)*13 | | 7k+3=-32 | | t-8×-2=12 | | 8x=3x+30(1+x)-30 | | (4+x)^2+(2+x)^2=36 | | 8x=3x+3-(1+x)-30 | | 6-3(2x-4)=-8 | | 20=5.15x-15 | | 12x+2x^2=16 | | 6b−3=17 | | 4t−2=9 | | 10x23-5=225 | | 10x-5=225 | | 3/2y-6=6 | | x+(20)=19 | | 3^x-1=27 | | f=30=6f | | -1+-7x42-1x=36 | | 555200000000000j*6666666666666=1 |